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Abstract

Working memory is a critical aspect of both human intelli-
gence and artificial intelligence, serving as a workspace for
the temporary storage and manipulation of information. In this
paper, we systematically assess the working memory capacity
of ChatGPT, a large language model developed by OpenAl,
by examining its performance in verbal and spatial n-back
tasks under various conditions. Our experiments reveal that
ChatGPT has a working memory capacity limit strikingly
similar to that of humans. Furthermore, we investigate the
impact of different instruction strategies on ChatGPT’s perfor-
mance and observe that the fundamental patterns of a capacity
limit persist. From our empirical findings, we propose that
n-back tasks may serve as tools for benchmarking the working
memory capacity of large language models and hold potential
for informing future efforts aimed at enhancing Al working
memory.

Introduction

The advent of large language models (LLMs) like ChatGPT
and GPT-4 (OpenAlI 2023) has propelled the pursuit of arti-
ficial general intelligence (Bubeck et al. 2023) and unveiled
human-level emergent abilities (Wei et al. 2022a; Kosinski
2023). Among these abilities is the capacity to retain contex-
tual information while engaging in multi-turn conversations,
suggesting the presence of working memory in these LLMs.
In cognitive science, working memory is usually defined as
the ability to store and manipulate information in mind (Bad-
deley 1992) temporarily. It is widely regarded as a critical
element of human intelligence, as it underlies various higher-
order cognitive processes such as reasoning, problem-solving,
and language comprehension (Conway and Kovacs 2020).
Studies on human participants have revealed a fundamental
capacity limit in working memory (Cowan 2001). However,
there has not been a consensus on why and how working
memory capacity is limited (Oberauer et al. 2016; Wilhelm,
Hildebrandt, and Oberauer 2013). Among many theories, the
executive attention hypothesis (Engle, Kane, and Tuholski
1999; Engle 2002) suggests that working memory depends on
utilizing attention to maintain or suppress information, and
the restriction on working memory capacity is not specifically
about memory storage per se, but more about the capacity for
sustained, regulated attention in the presence of interference.
Supporting evidence of the executive attention hypothe-
sis includes results from the n-back task, which is arguably

the gold-standard measure of working memory capacity in
cognitive science (for a review, see Kane and Engle (2002)).
The n-back task, initially developed by Kirchner (1958), re-
quires participants to monitor a continuous stream of stimuli
and to decide for each stimulus whether it matches the one
n steps back in the stream (see Figure 1 for illustrations of
basic verbal and spatial n-back tasks). The participants in
this task must, therefore, continuously update their mental
representation of the target items while also dropping now
irrelevant items from consideration. So, some executive at-
tention processes are required in addition to storage. In this
task, the level of n at which a person’s performance drop
significantly can be taken as a measure of their working mem-
ory capacity. Typical human performance drops significantly
when n = 3 (Klatzky et al. 2008; Amon and Bertenthal 2018;
Jaeggi et al. 2010), which can be defined as the working mem-
ory capacity limit of an average human. To illustrate this, we
plot the data from one experiment presented in Jaeggi et al.
(2010) (see Figure 2).

In humans, working memory capacity has proved to be
closely related to fluid intelligence (Gf) (Cochrane, Sim-
mering, and Green 2019; Salthouse and Pink 2008), which
refers to the ability to reason and to solve new problems
independently of previously acquired knowledge. Training
on working memory capacity using the n-back task has been
shown to be effective in improving fluid intelligence (Au
et al. 2015; Jaeggi et al. 2008), highlighting the special role
of working memory capacity in human intelligence (Halford,
Cowan, and Andrews 2007). However, in artificial intelli-
gence, there has not been a consensus as to which metrics
should be accepted as an intelligence index when evaluating
and comparing cognitive abilities of LLMs (Mitchell 2023).
In the current study, we define the working memory of LLMs
as an emergent ability to selectively maintain and manipulate
information for ongoing cognitive processes, and hypothe-
sise that LLMs also have limited working memory capacity.
Taking a step further, just as how critical working memory
capacity is to human intelligence, it might also be used as an
index of the intelligence emgerged from LLMs.

To investigate these hypotheses, we use ChatGPT
(gpt—-3.5-turbo) as a representative of LLMs and de-
sign two categories of n-back tasks to evaluate its working
memory capacity, which reveals strikingly consistent patterns
of a capacity limit across multiple experimental conditions.
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Figure 1: Illustrations of verbal (top row) and spatial (bottom row) n-back tasks with n = {1, 2, 3}. Participants are instructed
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to give a response (“m”) when the current stimulus (e.g., a letter or a spatial location) is the same as the stimulus # trials ago, and
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not respond (“~”’) on nonmatch trials.
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Figure 2: Typical human performance in n-back tasks for
n = {1,2,3}. We plot the mean +1 standard deviation of
the data collected in Jaeggi et al. (2010).

We then compare the working memory capacity of different
LLMs, and confirm that our proposed metric, the working
memory capacity as measured by n-back tasks, could be a
strong correlate of the general capability of LLMs.

Related Works

Working memory has long been a subject of study in human
cognition (Cowan 2015). Unlike long-term memory, which
is stored in long-term synaptic weights in the neural system,
working memory is believed to be maintained by the acti-
vation of neurons in distributed brain networks (Mejias and
Wang 2022). However, the investigation of working memory
in LLMs remains largely unexplored. A few latest studies in
this line have shown that studying and improving the working
memory of LLMs holds great interest and significance, as it
can contribute to better performance of these models (Guo
et al. 2020; Li et al. 2022).

LLMs have played a crucial role in achieving impressive
performance across a wide range of downstream tasks. While
fine-tuning has emerged as a popular approach for adapting
a pre-trained model to new tasks (Dodge et al. 2020; Wei
et al. 2021; Bakker et al. 2022), it can be impractical to apply
this method to extremely large models and/or scarce data.
As an alternative, a method called in-context learning was

proposed in a study by Brown et al. (2020), showcasing the
remarkable few-shot learning capabilities of large language
models without requiring weight updates through gradient de-
scent. This method, which demonstrates the ability of LLMs
to retrieve long-term (pre-trained) knowledge and integrate
the correct knowledge with the context, bears a striking re-
semblance to how human working memory works. Since
its introduction, research on in-context learning in language
models has garnered significant attention from academia and
industry. Previous studies have presented various approaches
to leverage the in-context learning ability of language models,
including selecting labeled examples for demonstrations (Ru-
bin, Herzig, and Berant 2021; Lu et al. 2021; Liu et al. 2021),
meta-training with an explicit in-context learning objective
(Chen et al. 2021; Min et al. 2021), and exploring the variant
of in-context learning that involves learning to follow instruc-
tions (Wei et al. 2022b, 2021; Efrat and Levy 2020; Mishra
et al. 2021a,b)

However, to the best of our knowledge, this paper is the
first that provides an empirical analysis of the working mem-
ory ability of LLMs from a cognitive science perspective.

Methods

We devised two categories of n-back tasks involving
verbal and spatial working memory (Szmalec et al. 2011)
respectively and prompted ChatGPT (using the OpenAl
API, model = “gpt-3.5-turbo”, temperature = 1,
other parameters are set to default values) to complete
the tasks in a trial-by-trial manner. For both categories,
we have a base version task and several variants derived
from the base version further to test the model’s per-
formance under different conditions. To compare the
performance of ChatGPT with other LLMs, we also used
API of the following LLMs to perform the base version
of the verbal task: {Bloomz-7B, Bloomz-7Bl-mt,
ChatGLM-6B_v1.0, ChatGLM-6B.wvl.1l, GPT-4,

Vicuna-7B, Vicuna-13B}. All code for our
experiments can be accessed in this repository:
https://anonymous.4open.science/t/ChatGPT-WM-ECFA.
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Figure 3: Illustrations of the variants of verbal n-back tasks (also applicable to spatial tasks). We use n = 2 in the figure. (a):
base version identical to the case presented in Figure 1 (top row); (b): stimulus on each trial now contains 3-6 random noise
characters (chosen from “#$%&@ " ~”) in addition to a single alphabetical letter that the LLM should compare across trials. The
LLM is instructed to ignore these noise characters, and the alphabetical letter may appear in any position in the noise-corrupted
stimulus; (c): alongside the input for every trial, the LLM is also provided with feedback on whether it has performed the
previous trial correctly, in the format of “Feedback: your last response was {correct, wrong}”; (d): the
LLM is prompted with a reasoning-eliciting instruction to output the final answer (“m” or “~"") and the rationale. Refer to Table 1
for the detailed instructions the LLM is prompted within each of the task variants.

Verbal n-back experiments. In the base version of the
verbal n-back task (see Figure 3a), for n = {1,2,3},
respectively, we generated 50 blocks of letter sequences

eliciting reasoning in LLMs (Wei et al. 2022b). In this
variant, we instructed the LLM to think step by step when
giving a response (see Figure 3b).

using an alphabet commonly found in the literature
(“bcdfghjklnpgrstvwxyz”). Each block contained a
sequence of 24 letters, which are presented one at a time
as user input to the API. We included 8 match trials and 16
nonmatch trials in each block. The LLM was instructed to
respond with “m” on match trials and “~” on nonmatch trials.
Apart from the above base version, we further explored the
behavioral performance of ChatGPT on the following three
variants of the task (see Table 1 for detailed prompts):

* We added 3 to 6 noise symbols to the input on every trial
to examine the LLM’s behavior when it is impossible to
get the correct answer by simply doing a string match
between stimulus inputs (see Figure 3b).

* In human behavioral studies, a common strategy to im-
prove participants’ performance is to provide feedback
after each trial (Shalchy et al. 2020). Here in the variant,
after the LLM gave a response for the current trial, we
provided feedback on whether its response was correct or
wrong alongside the stimulus input of the following trial
(see Figure 3c).

 Chain-of-thought (CoT) prompting has proved helpful in

Spatial n-back experiments. Although in its very nature,
LLMs are text-based, at least one study has demonstrated that
they have spatial reasoning abilities (Bubeck et al. 2023). To
build on this promising trail and further examine the spatial
working memory of ChatGPT, in the base version of the
spatial n-back task (Figure 4a), we constructed a 3 x 3 grid
using ASCII characters. For n = {1, 2, 3}, respectively, we
generated 50 blocks of grid sequences, each grid featuring
a letter X in one of the nine positions. Note that the letter
X was arbitrarily chosen to represent an occupied spatial
location textually and could be substituted by any other letter
or symbol. Each block contains 24 grids, including 8 match
trials and 16 nonmatch trials. Like in the verbal n-back tasks,
the LLM was instructed to respond with “m” on match trials
and “~” on nonmatch trials. We further explored the spatial
working memory capacity of ChatGPT with the following
modifications of the task (see Table 2 for detailed prompts):
e Similar to the variants of verbal n-back tasks, we also
had “spatial-with-noise”, “spatial-with-feedback”, and
“spatial-with-CoT-reasoning” versions of the task. The
with-feedback and with-CoT-reasoning variants were ba-



Table 1: Prompts used in different verbal task variants. Blue texts are to be selected as appropriate depending on the value of n

in the n-back tasks. Other colored texts are inserted as appropriate, depending on the task variant.

Task type Prompt

Verbal You are asked to perform a {1,2,3}-back task. You will see a sequence of letters. The sequence
Verbal with Noise will be presented one letter at a time, [For the with-noise variant only:] accompanied with
Verbal with Feedback random noise symbols chosen from “#S$%&@ "~ ~”. Please ignore the noise symbols and focus

(Figure 3a-c)

on the letter only. Your task is to respond with “m” (no quotation marks, just the letter m)
whenever the current letter is the same as the previous {one/two/three} letter(s) ago, and
“~” (no quotation marks, just the dash sign) otherwise.

Only ‘ém” and 6‘_’7
are allowed responses. No explanations needed: please don’t output any extra words!! The
sequence will be presented one letter at a time. Now begins the task.

Verbal with Reasoning
(Figure 3d)

You are asked to perform a {1,2,3}-back task. You will see a sequence of letters. The
sequence will be presented one letter at a time.

Your task is to respond with “m” (no quotation marks, just the letter m) whenever the current
letter is the same as the letter {one, two, three} letter(s) ago, and “~” (no quotation marks,
just the dash sign) otherwise. Please think step by step and provide your thinking steps after

[Tk

responding with “m” or “-".

Here are examples of how to format your response:

(D)*-:this is the first trial, so my response is -".

EH)

(2)*m:the letter {one, two, three} trial(s) ago was a, the

current letter is a,

so my response is m”.

(3)“-:the letter {one, two, three} letter(s) ago was a, the

current letter is b,

Now begins the task.

SO my response is

29

sically the same as those for the corresponding verbal
tasks. For the spatial-with-noise version, we added a noise
character (chosen from “#$%&@ " ") to 1 to 3 unoccupied
locations in the 3 x 3 grid on every trial, so that we could
examine the LLM’s spatial working memory when it is
not able to get the correct answer by simply doing string
match.

* To test if the LLM can reason in a more sophisticated
way, we further introduced two variants that specifically
require abstract spatial reasoning. For the first variant
(see Figure 4c), a match is defined as when the location
of the letter X is in the same row and/or column (i.e.,
including identical locations) as the X # trials ago. For a
second variant (see Figure 4d), a match is defined as when
the letter X appears in the same row or column, but not
both (i.e., excluding identical locations). This constraint
would further force the LLM to use abstract reasoning and
instruction-following abilities to perform this task. Given
the increased difficulty of these two variants, we expect
the LLM would have a worse performance on these two
variants compared to other variants.

* We also explored whether the size of the grid (3 x 3, 4 x 4,
5 x Hor 7 x 7) would influence the LLM’s performance
(see Figure 4b). To the best of our knowledge, there have
not been human studies exploring how the number of
all possible spatial locations would impact behavioral
performance in spatial n-back tasks. In light of this, we
did not have specific assumptions for how the LLM would

perform differently under these scenarios.

Results

To analyze the model’s performance in our experiments, we
used four widely accepted performance metrics reported in
numerous human behavioral studies: hit rate, false alarm
rate, accuracy and detection sensitivity.

In the current study, we did 50 blocks of tests for n =
{1,2, 3} in each experiment, which allows us to calculate
the standard error of the mean (SEM) and draw error bars
to visualize the reliability of our findings. Among the four
metrics, the pattern of hit rates and false alarm rates can vary
a lot depending on the specific task condition (Chooi and
Logie 2020). Accuracy, in turn, will also be biased by very
high/low hit rates and false alarm rates. In contrast, detection
sensitivity(d") is a much more robust performance metric. A
higher d’ indicates better performance, suggesting that the
individual is more accurately distinguishing between targets
and non-targets. Based on the overall difficulty of the current
task, we set d’ = 1 as the threshold to determine the working
memory capacity of a model: if at a certain level of n the
model’s d’ drops to around 1, we can define that its working
memory capacity is limited to n. In light of this, our analysis
below will mainly focus on d’ (see Appendix for the statistics
tests we conducted and performance distributions).

Verbal n-back experiments. In the verbal task variants,
we observed a performance pattern strikingly consistent with
human participants, with the LLM’s performance declining
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Figure 4: Illustrations of the additional variants of spatial n-back tasks (n = 2 in the figure) besides the variants presented in
Figure 3, which are also applicable to spatial tasks. (a): base version identical to the case presented in Figure 1 (bottom row); (b):
spatial tasks with larger grid sizes (4 x 4 shown for illustration; we considered 4 x 4, 5 x 5, and 7 X 7); (¢) and (d): two types of
spatial reasoning tasks that additionally require abstract reasoning. In (¢), a match is expected whenever the letter X occurs in
the same row and/or column as the location 7 trials ago (including identical locations); in (d), a match is expected when the letter

X appears in the same row or column (but not both) as the location 7 trials ago (excluding identical locations). Refer to Table 2
for the detailed instrnctions the T.1.M is nromnted with for each of the variants.
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Table 2: Prompts used for the spatial” task variants described in Figure 4. Blue texts are selected as appropriate depending on the
value of n in the n-back tasks. Other colored, task variant-dependent texts are inserted as appropriate. “Note: for the prompts in
spatial-with-noise, spatial-with-feedback, and spatial-with-CoT-reasoning tasks, refer to Table 1 for analogous examples.

Task type Prompt

Spatial You are asked to perform a {1,2,3}-back task. You will see a sequence of 3*3 [For larger

Spatial with Larger Grids ~ grids only:] {44, 5%5, 7*7} grids. Each grid has a letter X in one of the nine [For larger

(Figure 4a-b) grids only:] {sixteen, twenty-five, forty-nine} positions. For example, a grid with X at top left
corner wouldbe ™~ | X|_|_| I_I_I_I |1_l_I_1I =~ [Forlarger grids only:] omitted

here to save space. Your task is to respond with “m” (no quotation marks, just the letter m)
whenever the X is in the same position as the previous trial/two trials ago/three trials ago,
and respond with “~” (no quotation marks, just the dash sign) otherwise. Only “m” and “-”
are allowed responses. No explanations needed: please don’t output any extra words!! The
sequence will be presented one grid at a time. Now begins the task.

Spatial with Abstract Rea- You are asked to perform a {1,2,3}-back task. You will see a sequence of 3*3 grids. Each grid

soning has a letter X in one of the nine positions.

(Figure 4c-d) For example, a grid with X at top left cormner would be
TR Il I_I_I_I ~7".Your task is to respond with “m” (no quotation
marks, just the letter m) whenever the X in the current grid is in the same row or column as
the X in the previous trial/two trials ago/three trials ago, and “~”" (no quotation marks, just
the dash sign) otherwise. For example, the X'in ~~~ [ X|_[_| |_I_I_| I_I_I_I ~°°
is in the same row as the X in " | _IX|_| 1111 1_l_l_| ~°°
and "7 | _|_IX| I_l_I_I I_l_l_l *°°, and in the same col-
umn as the X in D N I U R - O R U D B and
ST 1Xl_l_l ~°°. [For Type 1 only:] Note that
TUUOXI_ b I I_l_I_I ~7° is also in the same row and col-
umn as "7 X _ || I_l_I_I I_I_I_I 7 ‘itself. [For Type 2 only:]

Note that if the X in the previous trial/two trials ago/three trials ago was at
the identical location to the X in the current grid, that does not count as a

match: for example, ~~° [X|_[_| |_I_I_| |_I_l_I ~°° 1is not a match to
X Il [_l_I_I ~ itself. The sequence will be presented one grid
at a time. Note that you are only allowed to respond with “m” or “~"". No explanations needed:

please don’t output any extra words!! Now begins the task.
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Figure 7: Results of abstract reasoning variants of spatial n-back tasks. Error bars represent =1 SEM.

significantly when n increased from 1 to 3 (Figure 5). Fur- Spatial n-back experiments. In the four versions of spa-
thermore, apart from the noise variant, all of the other three tial tasks corresponding to the above verbal tasks, the same
variants have a working memory capacity of around 3: their patterns of performance declines were basically replicated
d' drops to around 1 when n = 3. Adding noise significantly (Figure 6). CoT reasoning significantly improved model per-
reduces the model’s working memory capacity, which is anal- formance, although overall the model has a lower working
ogous to distracting stimuli presented in human working memory capacity in the spatial variants compared to their
memory experiments (Gaspar et al. 2016). verbal counterparts. We attribute this to the higher difficulty

of spatial n-back tasks compared to the verbal ones.
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We further evaluated whether the LLM could conduct
abstract spatial reasoning. As expected, the working memory
capacity of the model when doing abstract reasoning was
significantly lower than the base version (Figure 7). Although
the abstract reasoning variants haven’t been done in human
studies, we would expect to see similar decreases in working
memory capacity on humans because of the highly cognitive
demanding reasoning processes.

Our explorations on the effect of the grid size on model
performance yielded interesting results, too. The LLM has a
higher working memory capacity when the grid size is larger,
as seen from the d’ results in Figure 8. One possibility is that
when the grid size is larger, there might be less interference
between stimulus inputs across trials so that the LLM can
better keep track of the information flow without being con-
fused. Future studies should try to explain this phenomenon
in more detail, and analogous tasks on human participants
should be done to test the generalizability.

Model comparison. To investigate whether other LLMs
exhibit similar performance patterns, we tested 7 other LLMs
on the base version of the verbal n-back task (Figure 9). Strik-
ingly, GPT-4, which is arguably the most intelligent LLM
today, also possesses a working memory capacity that far
exceeds that of other LLMs. However, due to the high cost
of calling the API of GPT-4, we didn’t test it with n > 3
to determine its exact working memory capacity. In con-
trast, other open-source LLMs (Bloomz-7B, Bloomz-7B1-mt,
ChatGLM-6B_v1.0, ChatGLM-6B_v1.1, Vicuna-7B, Vicuna-

13B), which are considered less capable than GPT-3.5 and
GPT-4, have a very low working memory capacity and are
nearly indistinguishable from each other.

Discussions

We discover that ChatGPT has limited working memory ca-
pacity, and that its capacity limit is similar to that of humans.
Although some prompting techniques (such as the use of CoT
prompting) may be used to improve the model’s performance,
the trend of performance declines and the capacity limit still
bear a striking resemblance to humans. This consistent pat-
tern thus might be reflecting a fundamental constraint that
emerged from the architecture of the model, suggesting a pos-
sibility that the low-level mechanisms of working memory
in ChatGPT might be similar to human working memory, at
least in some aspects.

Our model comparison results further confirm that the
performance of LLMs on n-back tasks can be a reliable met-
ric for assessing their working memory capacity, which in
turn might reflect the general intelligence of reasoning and
problem solving emerged from these models. Future studies,
should test LLMs on other working memory span tasks used
in cognitive science (Conway et al. 2005; Daneman and Car-
penter 1980) to address the generalisability of n-back tasks
as measurement tools. Last but not least, our research opens
up a brand new question in the field of LLMs: if the working
memory capacity of LLMs is fundamentally limited, then
why? What does it tell us? And how can we improve it?
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