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Adding attention-awareness to an Augmented Reality setting by using a Brain-Computer Interface promises many interesting
new applications and improved usability. The possibly complicated setup and relatively long training period of EEG-based BCIs
however, reduce this positive effect immensely. In this study, we aim at finding solutions for person-independent, training-free
BCI integration into AR to classify internally and externally directed attention. We assessed several different classifier settings
on a dataset of 14 participants consisting of simultaneously recorded EEG and eye tracking data. For this, we compared the
classification accuracies of a linear algorithm, a non-linear algorithm, and a neural net that were trained on a specifically
generated feature set, as well as a shallow neural net for raw EEG data. With a real-time system in mind, we also tested
different window lengths of the data aiming at the best payoff between short window length and high classification accuracy.
Our results showed that the shallow neural net based on 4-second raw EEG data windows was best suited for real-time
person-independent classification. The accuracy for the binary classification of internal and external attention periods reached
up to 88% accuracy with a model that was trained on a set of selected participants. On average, the person-independent
classification rate reached 60%. Overall, the high individual differences could be seen in the results. In the future, further
datasets are necessary to compare these results before optimizing a real-time person-independent attention classifier for AR.
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1 INTRODUCTION

Augmented reality (AR) devices enable the embedding of visual content in a real-world surrounding. Their
promising future can be seen in the rise of scientific and public interest. Searching for "Augmented Reality" on
Google Scholar gives 88.200 results before the year 2000. This increased to 236.000 publications between 2000
and 2009 and reached 506.000 registered publications between 2010 and 2019. With the advance of computational
power and mobile technologies, AR becomes increasingly pervasive and allows for new interesting applications
on different devices.

Currently, most end users probably experience AR mainly through their smartphone camera. It is a very conscious
decision to interact with the device and often requires holding up the smartphone and pointing the camera
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towards points of interest. In contrast, AR glasses can make use of a head-mounted display that eliminates the
necessity of holding anything in hand. However, continuous visibility brings advantages and disadvantages
for usability. While it makes interaction more effortless, it introduces a higher risk of distraction. In times of
reminiscence, memory recall, mental arithmetic, or other forms of thoughts, the user’s attention is directed
internally (internal attention) and many changes of the augmented reality content could disrupt these processes.
For some applications, it could be important to detect times of external attention (observation, visual search,
general attentiveness to one’s surroundings) and adapt the user interface accordingly.!

Depending on the AR application and current scenario, internally directed attention can be desired or undesired.
If it is required to think about the presented information or situation, new visual or auditory input would possibly
interrupt the thought process. The central purpose of attentional mechanisms is the focus on relevant information
while supposedly irrelevant information is suppressed. The difficulty of the suppression of the sensory input
increases with increasing perceptual saliency [19], and while the appearance of possible distractors in the real
surroundings can not be manipulated through an Augmented Reality device, the virtual content that is displayed
should be sensitive to the attentional state of the user and the goal of the application. Contrastingly, if the
application is aware that the presented content is relevant and important but the user’s attention is directed
internally (i.e. mind-wandering, task-irrelevant thoughts), an AR application should react and actively regain
the user’s attention by increasing object saliency, or wait with relevant information until the user’s attention is
directed externally again. An example application is three-dimensional learning content visualized and animated
in Augmented Reality that pauses its presentation when internally directed attention is detected. Through this
attention-awareness, the possible task-relevant thoughts are not interrupted and important external information
is not missed.

The mentioned example application illustrates the importance of the "real-time" aspect of the classification.
Switching from one attentional state into another happens fast and can happen often. In a ten-second interval,
the attentional focus can change several times. Therefore, the application should be able to react quickly and
base its decision on short time intervals that most likely do not contain multiple states.

In this work, we explored different possibilities for a machine learning-based classification of internal and
external attention. When questioned about their attentional state, test participants may not remember their state
(as it was subconscious or forgotten), or they may simply be unable to verbalize it. Through the examination and
visualization of recorded user data, the causes for behavior can be found without relying on the fallible human
memory. The attentional state is subject to fast and frequent changes and the conscious reports of such would
themselves required attention shifts and disrupt fluent task solving. Thus, since explicit labeling of attentional
states by the user or the experimenter is unreasonable, we rely on decodable biosignals in real-time. For this
purpose, we used electroencephalography (EEG) and eye tracking (ET) data. Several studies claim that EEG and
ET features complement each other well and their combination can improve classification results for mental
states ([7, 8, 18, 23, 31, 35])

EEG data reflects electrical brain activity with a high temporal resolution, which makes it a favored measure
for Brain-Computer Interfaces despite its lower spatial resolution and higher setup time compared to methods
that measure oxy- and deoxyhemoglobin concentration (i.e fMRI and fNIRS). The spatial resolution of EEG
recordings can be increased to a certain level by adding more electrodes to the head. However, this increases
the setup time and decreases the usability for BCIs in many situations because of the decreasing comfort. Thus,
neurophysiological knowledge about attentional states is needed to improve the electrode positions for a suitable

For a more detailed taxonomy of internal and external attention see Chun et al. [11]
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setup with few electrodes. A further advantage of EEG recordings for this purpose is the possible mobility of the
system and the fact that the system is secured on the head which allows for moderate movements without signal
loss.

Eye tracking, on the other hand, measures gaze behavior which is usually quantified by fixations, saccades,
blinks, pupil dilation, and gaze speed. It has been shown in the past, that eye gaze behavior changes with changing
perceptual and cognitive demands. These findings led to the interpretation of eye behavior as distinctive for
different mental states [9]. The effect of the attentional state, specifically internally and externally directed
attention, on gaze behavior can also be used for classification. Eye tracking devices are comparatively cheap and
easy to set up. In the case of head-mounted AR displays, the tracking cameras can be integrated into the headset
or easily attached to it without decreasing the comfort of the user. The obvious advantages are contrasted by high
task-specificity, especially if a certain viewing behavior is required by the task, and more difficulties drawing
fine-grained conclusions (which could be necessary for successful classification) that generalize over participants
because the viewing strategies across participants might differ.

Overall, the topic of generalizability over participants is of high interest for the combination of BCIs and
Augmented Reality. If a high classification correctness and real-time monitoring of the attentional state are
possible, the two main issues that stand in the way of this technology being widely used are a high discomfort
of the setup and long calibration and training times before the actual usage. For many BCls, the classifier has
to be trained on person-dependent data for the accuracy to be high enough to allow for a helpful application.
Thus, models are usually very individual for each user and not generalizable over participants. The data for the
classifier training has to be collected in long training sessions where the recorded data can be labeled explicitly
because the classification algorithm needs to learn something from the data. Person-independence, however,
would exclude the need for previous training data collection and allow using the system "out-of-the-box" or
with a shorter calibration interval (i.e. for eye tracking, calibration is usually necessary and EEG often requires
impedance improvements). If the data were person-independent, the classifier could be pre-trained on data from
several other users, increasing the available amount of training data and hence, increasing the variance in the
data and reducing the bias or potential overfitting on only a few training runs.

In a previous work, we described an AR paradigm for the collection of data during times of internally and
externally directed attention [46]. We were able to show that the data collected during the task was classifiable
into the two attentional states using a person-dependently trained Linear Discriminant Analysis (LDA) for power
spectral density based EEG features generated over a time interval of 13 seconds. The experimental paradigm
was a spatial alignment task in AR with one condition requiring internally directed attention and one condition
requiring externally directed attention. For this work, we shifted our focus from proving the initial validity of
the paradigm to a detailed analysis of modalities, data segmentation, classifier choice, and most importantly:
systematically exploring the potential for person-independent classification that could be applied to a real-time
setup in the future. Accordingly, we added the modality of eye tracking to our analysis to test whether it is better
suited for a person-independent approach or whether a multimodal approach would increase the classification
accuracy. As another way to improve the classification accuracy, we compared the previously used LDA to a
non-linear algorithm (Random Forest) and a simple Neural Net that were trained on the same feature set, as
well as a shallow convolutional neural net that was trained on the raw EEG data. For the aspect of real-time
analysis, we assessed using shorter data intervals for the classification. The generalizability over participants was
analyzed using a pooled dataset of all participants before running a person-independent classification analysis
with either a leave-one participant out training or training on a set of selected participants that had the highest
person-dependent classification accuracies.
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1.1 Related and Preliminary Work

Within the wide field of attention, this study focuses on the detection of internally and externally directed
attention. A detailed taxonomy, including classic debates on the topic and new issues, was published by Chun
et al. [11]. They acknowledge the complexity and ubiquity of the field and provide an organized framework
that characterizes the terms. To the best of our knowledge, there is no previous study that reports results of a
person-independent BCI for internal and external attention differentiation but several studies have reported
neurophysiological mechanisms of these two states.

In 1985, Ray and Cole [34] already reported that alpha power in the EEG (8-14 Hz) decreases in sensory-intake
tasks and suggested that a high alpha activity reflects strong internal attentional focus. The same effect was
reported by Cooper et al. [12]. The authors showed that increased alpha-band power is recorded during times of
internally directed attention tasks and conclude that this shows that external stimuli are actively suppressed. In a
study from 2014, Benedek et al. [3] found differences in the frequency power spectrum in the right parietal brain
region for internal and external attention. During times of high internal attention demands, the alpha power in the
right parietal cortex increases which, according to the authors, might reflect the activity of the ventral attention
network. Harmony et al. [21] performed a narrow filter band analysis based on data recorded during a mental
arithmetic task and the Sternberg paradigm and supported their hypotheses that increased delta band activity
(1-4 Hz) is an indicator of internal attention processes. Using lateralized power spectra for a spatial attention
task, Van der Lubbe et al. [45] found that both internal and external attention induce early posterior increased
contralateral theta power (4-8 Hz) and late posterior increased ipsilateral alpha power, whereas only external
spatial attention relates to posterior contralateral negativity. Arguably, the classification of these attentional
states should be possible based on EEG data. Indeed, Putze et al. [32] recorded EEG data in a computer-based task
and reliably classified internal and external attention on a single-trial basis. This classification was performed in
a person-dependent fashion. As reported before, a similar person-dependent classification based on EEG data
was successful in Vortmann et al. [46]) for an AR paradigm.

The second modality that we will analyze in the context of person-independent BCIs for internal and external
attention awareness in Augmented Reality is eye tracking. As mentioned before, eye gaze behavior is influenced
by the cognitive processes of the user. Faber et al. [15] and Bixler et al. [5] detected phases of mind-wandering
during reading tasks based on fixations, saccades, blinks, and pupil dilation compiled over 12-second windows.
Hutt et al. [22] focused their study on the classification of mind wandering phases during lecture viewing. Their
Bayesian Network classifier outperformed a chance-classifier if it was trained on global gaze features, such as
number and duration of fixations. A detailed review of these and other features for internally and externally
directed attention was given in Annerer-Walcher et al. [1]. The authors described previous findings for pupil
diameter, pupil diameter variations, fixation disparity, fixation disparity variation, blinks, saccades, and microsac-
cades dependent on the attentional state, and tested the features for a newly collected dataset of internal and
external attention. The same team also performed an EEG and eye tracking co-registration study for internally
and externally directed attention, published in Ceh et al. [10]. They concluded from the results that EEG activity
and eye tracking are well suited for internal focus detection and that EEG alpha power is correlated with pupil
dilation, suggesting that they are involved in a neurophysiological gating mechanism that serves for shielding
internal cognition from irrelevant sensory information. That eye tracking data alone can be used to differentiate
internal and external attention reliably for person-dependent analyses in a computer-based setting was shown in
Benedek et al. [4].
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A first real-time classifier for internal and external attention was developed in Vortmann et al. [49]. However,
the classifier was person-dependent and thus, required the previous recording of a large amount of training
data. Additionally, the classification accuracies were mediocre for the real-time system. We are not aware of a
person-independent EEG classifier for internal and external attention. However, a few approaches for person-
independent classification of other cognitive phenomena related to attention have been made. Fazli et al. tested a
classifier for motor imagery based on spatio-temporal filters on two different datasets (83 recordings in [16] and 45
participants in [17]). Their results in both studies show that the classification is possible. Zhang et al. [51] worked
with four different movement intentions and were able to classify them better than baseline using a convolutional
recurrent attention model. In Pandey et al. [29], a multilayer perceptron was used for person-independent emotion
recognition, and in Pandey et al. [28], the authors used wavelet transform features for a deep neural network to
classify emotion based on valence and arousal independent of the subject.

There have been several approaches for applications that used attention-related processes to adapt an AR
interface without using a BCL. For example, Lu et al. [26] reported the facilitation of visual search in AR when
effective subtle cueing methods were used. Bonanni et al. [6] used a layered interface to reduce the cognitive load
of the user in AR. The interface was designed following cueing and search principles of attention theory. While
these studies only used knowledge about attention, the introduction of neural information about the attentional
state would have even more benefits.

Si-Mohammed et al. [40] reported the current state-of-the-art for combining BCIs and AR and assessed the
general feasibility and design of their combination with 4 studies [41]. They conclude that this interaction will be
the future of AR.

To test the idea that a differentiated interface reaction depending on internal or external attention would
improve the usability of the system, we also performed a preliminary experiment to compare an attention-aware
system with an attention-unaware system. As proof of the overall concept, we ran this pilot experiment that had
participants rate the distraction and usability of the two systems. The full study was reported in Vortmann et
al. [47]). The basic system was a Steady-State Visually Evoked Potential (SSVEP)-based Smart-Home System in
AR that reacted independently of the attentional state (introduced in [33]). This system was compared to the
same system where we added real-time classification of internal and external attention (introduced in [48]. In the
attention-aware system, the display of objects in AR was limited to times of external attention. The goal was
to show that the inclusion of such classification-based adaptations improves the usability of the system. The
average System Usability Score (SUS) of the attention-aware system was significantly higher than the SUS of the
attention-unaware system. The same held for the distraction rating, where the attention-aware system was rated
significantly less distracting.

These conclusions motivate us to improve our attention classifier. Its improvement in the usability of AR
applications might help AR devices on their path to ubiquity. One limitation of the system is the fact that the
classifier required person-dependent calibration, did not make use of the ET data, and its parameters were not
optimized with regards to classifier selection, window size, and others.

The exploration of person-independent EEG-BCIs for attentional processes is still a very young field but worth a
deeper dive.

1.2 Hypotheses and Research Questions

The overall goal is to find an optimal, robust setup and analysis for a real-time classification that does not require
previous classifier training.
We hypothesize that (a) multiple modalities improve classification accuracy, (b) short time intervals of data
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suffice for reliable classification results, that (c) brain activity and eye gaze behavior follow the same patterns for
all participants during the two attentional states, and thus, (d) classifier trained to detect internal and external
attention should be able to reliably classify new datasets person-independently. The motivation for all performed
analysis steps and comparisons will be explained in detail in the following part by posing our research questions.
Based on the preliminary study, the related work done on this topic, and our hypotheses and goals, we decided
on several research questions we want to answer and the steps we want to follow to achieve this.
As a first follow-up analysis of the paper by Vortmann et al. [46], we analyzed the collected eye tracking data with
a Linear Discriminant Analysis (LDA). Eye tracking devices are easier to set up and calibrate than EEG systems and
would, therefore, improve the users’ comfort. First, we checked whether the EEG and ET classification results cor-
related, or whether single features correlated with each other. This could suggest that ET artifacts in the EEG data
influence the EEG classification. One of our main research questions was whether classification purely based on ET
data would lead to similar or better results in the classification of internal and external attention compared to EEG
data and whether a combination of the two modalities would increase the achievable accuracy of a single modality.

As a next topic, we addressed the question of which time window length was best suited for a high accuracy
while remaining close to real-time analysis. The user can switch back and forth between internal and external
attention quickly, which means that long time windows would contain periods of both states. Shorter epoch
lengths would mean a better estimation of the current state but could cause a decrease in accuracy due to fewer
data samples. This goes hand-in-hand with the question, whether a higher number of time windows (and thus
feature sets) for the training of the classifier increases the accuracy of the predicted state or whether the overall
length of the training data in seconds is more important. The answer to this question would determine whether
cutting a short training period in several small time windows would have the same effect as collecting longer
time windows in a longer training session.

In their 10-year update paper of "Classification Algorithms for EEG-based Brain-Computer Interfaces", Lotte et
al. [25] suggested that smaller amounts of data (as only available in this study) are classified best using an LDA
or a Random Forest classifier. Thus, we decided to compare the results that were achieved using the LDA with
the classification accuracy of a Random Forest classifier. Additionally, we wanted to know whether a Neural Net
approach would lead to more accurate results than our linear models or the Random Forest. Appriou et al. [2]
suggested that Neural Networks work better for EEG data during workload classification, outperforming linear
approaches. For better comparability, we first choose to train a vanilla neural network with the same feature set as
the shrinkage LDA and the Random Forest to see if it has any advantages if supplied with the exact same features.
On top of that, we used a convolutional neural network that was specifically designed for the classification of raw
EEG data and compared it to the other classifiers. Given that they are trained on different input data (a generated
feature set that lost time resolution vs. the raw time series of each electrode) the comparison is less meaningful.
However, since we are mainly interested in finding the best performing classifier setup, the absolute classification
accuracies will be a good comparison metric. For the convolutional neural net, we decided to use the shallow
Filter Bank Common Spatial Patterns (FBCSP) Neural Network from Schirrmeister et al. [39].

After answering all these questions on a person-dependent level, we wanted to know how the effects play
out in datasets that pool multiple participants (in contrast to person-dependent classifiers). This would answer
the question of how generalizable the collected data is. In a "pseudo"-person-independent analysis of the pooled
datasets, we evaluated possible advantages of the processing, the datasets, and model fitting for a possible
calibration-free classification.

Ultimately, all previous results were considered to attempt person-independent classification of internal and
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Fig. 1. Experimental procedure taken from Vortmann et al. [46].

external attention in the given AR task. We trained several different versions of the models that were based on
different subsets of participants or all but one participant (leave-1-out approach).

2 THE DATA SET

The data set analyzed in this paper was previously recorded and published in the study by Vortmann et al. [46].
We refer to their paper for a detailed description of the task implementation and data collection.

The recordings were executed in an uncontrolled office setting to simulate realistic usage. While performing the
task, the participants wore an EEG cap and the Microsoft HoloLens with an attached eye tracker. The paradigm
induced phases of internal and external attention in the AR setting.

2.1 Experimental Task

A spatial perspective alignment task was implemented for the HoloLens as a paradigm for the data collection. In
the task, the participant had to keep a ball and a tube visually aligned by slightly moving their upper body. The
participant was instructed to keep the moving virtual ball "inside" the fixed virtual tube in front of them. Both
objects were visible during the external trials. Thus, externally-directed attention was required for good task
performance. During internal trials, neither the ball nor the tube were moving but still displayed on the side of the
visual field. However, the participant was asked to imagine the tube in the same position as before. The movement
of an imagined ball was described to the participant by a sequence of numbers. Each number represented a
position on the screen and an endpoint of the ball movement. The participant was instructed to move their upper
body following the imagined spatial alignment. To achieve a good performance, internally-directed attention on
the imagined objects was necessary.

In total, one session contained 36 internal and 36 external trials in an alternating order with breaks in between.
The internal trials lasted 15 seconds and the external trials 20 seconds (see Figure 1). Before the recording of the
real trials, every participant got accustomed to the task in a tutorial that was individually paced. Therefore, the
recorded session should only contain trials that were performed correctly.
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2.2 Participants

Fifteen healthy participants (mean age 27.4 + 10.4; three females) were recruited for the experiment. All had
normal or corrected to normal vision, were right-handed and all but three participants had previously used an
Augmented or Virtual Reality Device. Technical problems during three of the sessions led to the exclusion of one
participant and two sessions with a reduced trial number (54 and 48 instead of 72; marked * in subsequent tables).

2.3 Data Collection

Every participant filled out a demographic and a mind-wandering-related questionnaire (MWQ) before the
experiment. The MWQ was presented and validated in Mrazek et al. [27]. It contains questions concerning the
probability of a person falling into a state of wind-wandering in different settings and situations. The results of
the questionnaire were collected to test if any participant had a suspiciously high score and if their data during
the experiment was influenced by this.

During the task, interaction data, movement data, EEG, and eye tracking data were recorded.

The EEG data recording was performed at 500 Hz with a 16-channel wet electrode cap from g.tec nautilus
(electrode positions: Cz, FP2, F3, Fz, F4, FT7, C3, FP1, C4, FT8, P3, PZ, P4, PO7, PO8, Oz of the 10-20 system).
Impedances were kept below 20 kQ with CZ as a recording reference.

A binocular, wearable Pupil labs eye tracker was used to record eye gaze during the task. The gaze points and
detection confidence were sampled at 120 Hz, using the provided recording software. In the first step, the two
eye tracking cameras that were fixed to the HoloLens were adjusted in depth and angle individually for each
participant. For the calibration, a fixed gaze task with 9 sequentially shown points was displayed on the HoloLens?.
After the sessions, the participants filled out a short questionnaire about their workload perception during the
task.

3 PREPROCESSING

The eye tracking and EEG data were recorded simultaneously but preprocessed individually. The simultaneous
recording was managed through LabStreamingLayer (LSL) [38], which led to synchronized timestamps on both
modalities and an additional marker stream. The marker stream contained all necessary information about the
current events in the experimental setup (i.e. internal trials start/end, tutorial end, break). The preprocessing
includes all steps from the raw data to feature vectors for the specified time windows. The whole process can be
seen in Figure 2.

3.1 EEG

After extracting the EEG data from the LSL output, the raw signal was processed using the MNE Toolbox [20]. A
notch filter was applied at the power frequency of 50 Hz. The filter length was chosen automatically, as suggested
by MNE, based on the size of the transition regions (3.3 x reciprocal of the shortest transition band). Additionally,
the signal was band-pass filtered between 1 and 50 Hz with a FIR filter design using the window method with the
same filter length as the Notch filter. Broken channels were excluded after a visual examination and interpolated
before computing and applying the common average reference (CAR).

The information about internal and external trial onset was taken from the markers and used to cut the EEG
data into different labeled windows. The first second after the trial onset was never used to avoid interference
of unwanted artifacts, related to the instruction, audio signal, or belated reaction. To evaluate the effect of the
length of an EEG window, we generated several non-overlapping windows (epochs) from each trial with different
interval lengths. The chosen epoch lengths were 13 seconds, 7 seconds, 4 seconds, 2 seconds, and 1 second. Each
epoch was baseline-corrected based on the first 0.5 seconds after the epoch onset. Label information was saved

2Pupil Labs provides a library for Unity - https://github.com/pupil-labs/hmd-eyes
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with each epoch.

The features for the epochs were generated based on the Power Spectral Densities (PSDs) of each EEG channel
in the epoch. To calculate the PSDs, we used the multitaper method. We computed the average and maximum
density for the Theta- (0: 4-8 Hz), Alpha- (a: 8-14 Hz), Beta- (f: 14-30 Hz), and lower Gamma-band (y: 30 - 45
Hz) and used them as features. The total number of features for one epoch is number of channels x number of
frequency bands x 2 (average/max), which results in 16 x 5 x 2 = 160 features.

3.2 Eye Tracking

During the experiment, the Pupil Labs eye tracker recorded the confidence for the measurement as well as the x-
and y-coordinate of the currently generated gaze point. All points whose coordinates exceeded the range 0-1
were deleted and instead set to 0 or 1. This range was specified by the manufacturer and all points outside these
thresholds should be considered as outliers and filtered from the data, as recommended. We assumed that the
proportion of filtered/unfiltered data could contain important information about the attentional state and thus
decided, to include it as a feature in our feature set. The gaze point is calculated based on the binocular data.
After this cleaning, the ET data was cut into smaller labeled windows in the same manner that the EEG data was
windowed.

For each epoch, the following 14 features were generated from the ET data: Proportion of filtered/unfiltered data,
total distance covered by the eyes, average gaze speed (overall gaze distance/window length), the variance on
the x-axis, variance on the y-axis, mean x-location, mean y-location, the average length of fixations following
Salvucci et al. [37], average number, speed and length of saccades (Engbert and Kliegl algorithm [14]), average
number and length of fixations following Smeets et al. [42], average confidence of the eye tracker. All features
were used for the combined feature vector.

4 THE CLASSIFICATION

One of the research questions guiding this paper was what effect the classifier choice would have on the accuracy of
the classification. A Linear Discriminant Analysis was chosen in Vortmann et al. [46] based on the argumentation
of Wang et al. [50] that it works sufficiently well for binary classification tasks. For the comparison, we chose to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 80. Publication date: June 2021.



80:10 « Vortmann et al.

also include a non-linear state-of-the-art classifier: A Random Forest (suggested by Lotte et al [25]). A study by
Appriou et al. [2] suggests, however, that a neural network approach leads to better results in EEG classification.
We implemented a vanilla neural network that classifies the same generated feature set as the LDA and the
Random Forest, as well as a more complex shallow convolutional neural net that is based on a Filter Bank Common
Spatial Pattern analysis and works with raw EEG data. Thus, we chose to compare four classification approaches
by performing our initial analyses with all of them.

The evaluation of the results was always based on the calculated accuracy of how well the classifier predicted the
label of the training set. The two classes (internal and external) were equally frequent in the data set and test and
training splits were stratified to keep this distribution. The chance level to guess the correct class was 50%, which
was used as the baseline.

4.1 Linear Discriminant Analysis

For the implementation of the Linear Discriminant Analysis, the scikit-learn toolbox was used [30]. The size of
training and testing sets varied, depending on the current research question. The general approach was using
50% of the data for training in a shuffled but stratified fashion. However, we also examined the effect of the
training data amount (see Section 5.3.1). The training data was z-normalized. The LDA was computed with a
least-squares solver and an optimized shrinkage factor. This hyperparameter optimization of the shrinkage factor
was performed on the training data in a shuffled, stratified 10-fold cross-validation for each participant and the
best performing configuration was used for the classifier training afterward. The same configuration of the LDA
was used to classify both EEG and ET data.

4.2 Random Forest

The Random Forest was also implemented with the Scikit-Learn toolbox [30]. All training and testing settings
were the same as in the LDA approach but no hyperparameter optimization had to be performed. During the
classification pipeline, we forewent normalizing the training data because Random Forests work better on not-
normalized data. The feature vector that was generated on the power spectral densities of each electrode was
used for the training and testing and the maximum tree depth was set to 40 while the number of estimators was
set to 100. These parameters were systematically tested on a set of participants and then fixed for all participants.

4.3 Vanilla Neural Net

The simple Vanilla Neural Net was implemented in Tensorflow and Keras. It consists of two hidden layers with a
sigmoid activation function. The Adam optimizer uses a fixed learning rate of 0.0015 and the loss is computed
using the binary cross-entropy. Again, the same training and testing split strategies as for the LDA were used.
The model was trained for at most 1000 epochs, with an early stopping callback in case the training accuracy did
not go up for at least 30 epochs. The batch size was set to 1500.

4.4 Shallow Filter Bank Common Spatial Patterns Neural Network

The shallow FBCSP Neural Network (sSFBCSP-NN) was implemented with the braindecode toolbox [39]. It is
a convolutional neural network that is designed to use the spectral power as features, which is inspired by a
pipeline to extract FBCSP. After a temporal convolution layer and a spatial filtering layer, the network performs
a mean pooling on the sixths layer, has a drop-out layer with a drop probability of 0.5, and applies a logarithmic
activation function to achieve a linear classification result (see Table 1). The suggested cropped training strategy
by Schirrmeister et al. [39] was applied. The learning rate was set to 0.015 and the weight decay between the
layers was set to 0. This parameter optimization was preliminarily performed on selected data and the parameters
were kept the same across all analysis runs. Each model was trained for 100 epochs. The sFBCSP-NN was only
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Table 1. Architecture description of the Shallow FBCSP Neural Net based on an exemplary EEG input length of 2000 samples.
Implemented in PyTorch.

Layer Name Type Output Shape Num. Parameters Parameters in %
1 dimshuffle Expression [-1, 1, 2000,16] © 0

2 conv_time Conv2d [-1, 40, 1977, 16] 1040 2,82
3 conv_spat Conv2d [-1, 40, 1977,1] 25600 69,41
4 bnorm BatchNorm2d [-1, 40, 1977,1] 80 0,22
5 conv_nonlin Expression [-1,40,1977,1] o0 0

6 pool AvgPool2d [-1,40,1903,1] © 0

7 pool_nonlin Expression [-1,40,1903,1] © 0

8 drop Dropout [-1,40,1903,1] 0 0

9 conv_classifier Conv2d [-1, 2,13, 1] 10162 27,55
10 softmax LogSoftMax [-1, 2,13, 1] 0 0

11 squeeze Expression [-1, 2, 13] 0 0
Total 36882

used to classify EEG data, not for ET data because it is built especially for EEG data. Finding a suitable Neural Net
to classify the recorded eye tracking data is still subject of ongoing research and will this not be part of this work.

5 RESULTS

The main goal of this work is to explore the effects of different choices during the recording, the processing, and the
classification. To evaluate these effects, we perform several comparisons of settings. For more clarity, the methods
used for comparison will be described immediately before we report the results, and the implications drawn
from the results will be mentioned immediately afterward. The order of the report reflects the iterative process
that was followed to answer our research questions. The first analyses were performed in person-dependent
fashion, followed by similar analyses on a dataset that was pooled over all participants, and finally, true person-
independent analyses with settings that proved most successful in the previous comparisons. When we average
our results over participants, we do not only report the average classification accuracy but a 95%-confidence
interval of the estimated accuracy. This way, we get a more realistic and reliable statement from a comparatively
small dataset.

Participant 14 was left out for some of the analyses because the recorded dataset contained fewer trials and was
not usable for some comparisons. A significance level of & = 0.05 is assumed. For significance testing, paired
two-tailed t-tests were applied.

5.1 Effect of Modality Choice

The first comparison explores the effect of modality choice on classification accuracy. In Vortmann et al. [46], the
EEG data was already compared to a classification based on movement data recorded during the experiment.
The movement data was recorded by the HoloLens and entailed the information about the current head position
and rotation in relation to the virtual objects. In this work, we compare the EEG results to results obtained
from classifying eye tracking data and from a combined feature vector that includes the features used for EEG
analysis and the features used for ET analysis. For this multi-modal approach, we considered an early fusion of
the features. In contrast to late fusion, an early fusion can exploit the relations between the tightly synchronized
modalities. The features for EEG and ET were generated as described in Section 3.
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Fig. 3. The average classification results of 100 runs per participant. Performed with only the EEG feature vector, only the ET
feature vector or a combined feature vector. Sorted increasingly by best result for a combined feature vector. Classifier: LDA,
Test-Training-Split: 1:1, Epoch length: 13 seconds

The features were generated on 13-second windows of the cleaned data and split into 50% training and 50%
testing data in a random but stratified fashion. A new LDA was trained and tested for 100 different splits per
participant. The average classification accuracy per participant can be seen in Figure 3 for both modalities and
their combination. Based on these individual results, the 95%-confidence interval for the mean EEG classification
accuracy was [0.73, 0.88], for ET [0.63, 0.73] and for a combined feature set [0.76, 0.89]. The accuracy of the
predictions based on ET data outperformed the EEG-based classification for 5 of the 13 participants. The combined
feature set improved the classification accuracy compared to a single modality feature set in 6 of the participants.
The combination is significantly better than only ET features with ¢(12)= 3.2801, p<.001. However, the improvement
is not significant compared to the EEG feature-based classification (£(12)=1.6497, p=.1249).

5.1.1 Correlation between Modalities. We want to examine, whether the information that is classified in the EEG
data might be a neural response caused by eye movements or eye movement artifacts. If the neural correlates of
the eye movements were a reliable help in the classification process, the results for the two modalities should
be statistically dependent in a linear way. Therefore, we compared the ET and EEG classification accuracies
pairwise for each participant (Figure 4). A correlation analysis yielded that there is only a weak linear correlation
between the results (Pearson’s r = -0.2). On top of that, we compared the predictions for each test trial of each
participant after splitting the EEG and Eye Tracking data into the same training and test sets. For all participants,
this analysis showed neither a strong positive nor a strong negative correlation between the predictions for each
trial. We conclude that eye movements do not play a mayor role in the classification process of the EEG data.

5.1.2  Correlation between Features. For a more detailed insight into the role of eye movements and their artifacts
in the classification process of EEG data, we analyzed the correlations between the individual features for every
participant. The correlation matrices were examined visually for abnormalities or unexpected correlation patterns.
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Fig. 4. ET and EEG results for each participant (represented by a square). The Pearson’s correlation of r = -0.2 is visualized by
a linear approximation of the data points to show the trend in the data.

For further insight into feature importance and selection in the classification process, refer to the previous paper
by Vortmann et al. [46].

The correlation matrix of participant 1 in Figure 5 shows high correlations within ET and within EEG features
but low correlations between the two subsets. This behavior is as expected. Participant 1 was chosen because it
has one of the best classification accuracies for ET and for EEG data.

The correlation matrix of participant 9 instead, shows strong negative correlations between some of the ET
features and the EEG features (see Figure 5). Additionally, there seems to be no or only a weak correlation
between some related EEG features (adjacent features represent the same frequency band for adjacent electrodes).
Participant 9 had among the lowest classification accuracies. These two participants had the most striking
correlation matrices. Most participants’ matrices are somewhere between these extremes.

We conclude that eye movement artifacts or other recording problems could weaken the classification performance
and that the EEG classifier does not improve by learning eye artifacts.

Overall, the substitution with eye tracking features, or the addition thereof, did not significantly improve
person-dependent classification accuracies for internal and external attention in the AR paradigm for person-
dependent classification. Whether there is a common pattern among participants for each modality is crucial
for the success of a person-independent classifier. If the inter-participant differences are high, the predictions
for a new participant, based on a model that was trained on other participants, will vary greatly from the true
attentional state. In consistency with the person-dependent analysis, we classified the pooled dataset for the
13-second epochs (see Section 5.1).

The 95%-confidence interval of the resulting classification accuracies based on the EEG feature vector yielded
the range of [0.688, 0.726]. The mean accuracy based on the ET features was only 52.75% (confidence interval:
[0.508, 0.547]) and the combined feature vector had slightly worse results than the pure EEG-based classification
with a range of [0.683, 0.722]. The difference between the EEG and ET based classification is significant with
1(12)=2.4313, and p=.0317. So is the difference between the ET and the combined feature set with #(12)=3.2801, and
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Fig. 5. Feature correlation matrices for participants 1 and 9. Exact feature names were omitted for clarity reasons. The first
14 features are ET features and the following features are EEG features.

p=.0066. The difference between the classification accuracies achieved with the EEG features and the accuracies
achieved with the combined feature set is not significant (#(12)=t = 1.6497, p=.1249).

The chosen ET features seem to generalize poorly over participants for the differentiation between internal and
external attention in augmented reality. For a better understanding of this effect, the feature values for each
participant were compared in the next step.

5.1.3  Eye Tracking Feature Exploration. For a detailed examination of the features, each feature was visualized as
a boxplot for both conditions across all participants. The participants were ordered from the highest individual
ET classification accuracy to the lowest. As an example, Figure 6 shows the boxplot for the number of saccades.
Each individual feature was inspected for similarities between participants or common patterns in the means,
variations, or outlier range that is represented in the boxplots but none was found. As it can be seen in the
example plot the feature "number of saccades" is represented very differently between participants: sometimes,
the mean number of saccades is higher for internal attention and sometimes for external attention. The range
varies greatly and there is no common effect among participants with a higher accuracy (plotted towards the
right) compared to participants with a lower individual accuracy (plotted towards the left) when it comes to the
difference between the means. We examined all eye tracking features but from the collected data, there seems
to be no characteristic eye gaze behavior that generalizes over participants. A bigger or different feature set
with other features might result in better accuracies. We chose the features in this approach based on currents
standards from the literature. Finding eye tracking features that generalize better over participants for Augmented
Reality tasks is out of the scope of this work and will be the topic of future research. For all further analyses,
the ET data will be left out because for now, it does not help to improve person-independent real-time attention
classification in Augmented Reality.

5.2 Effect of Classifier Choice

Following the research question of whether a different classifier would improve the classification results for the
EEG data in a person-dependent analysis, we tested all four classifiers that were described in Section 4. Again, for
each participant, the classifiers were trained and tested 100 times with random train-test-splits with a 1:1 ratio.
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Fig. 6. Participant-dependent boxplot for the number of saccades split into internal and external attention trials. Participants
are sorted from the highest classification accuracy on the left to the lowest on the right.

The 95%-confidence interval for the LDA resulted in [0.768, 0.847], for the Random Forest in [0.702, 0.838], for the
Vanilla Neural Net in [0.653, 0.696] and for the sSFBCSP-NN in [0.754, 0.839]. The results of the Vanilla Neural Net
are significantly worse that for the LDA (#(12)= 3.6130, p=.0036), the Random Forest (#(12)= 2.9046, p=.0132), and
the sSFBCSP-NN (#(12)= 3.1516, p=.0084). The difference in classification accuracy is not significant between the
SFBCSP-NN and the LDA (#(12)=0.6814, p=0.5085), the sSFBCSP-NN and the Random Forest (#(12)= 0.6687, p=0.5164),
or the Random Forest and the LDA (#(12)= 0.9701, p=0.3512). See Table 2 for the exact results per participant.

For the 13-second window in this analysis, the LDA is the best performing classifier on average, however, the
difference is only significant compared to the Vanilla Neural Net. For shorter window lengths, the amount of
available training and testing data will change and the raw input for the sSFBCSP-NN will shorten. We decided to
perform the analysis of shorter windowing intervals for the person-dependent analysis using all classifiers in
case one profits more than the other from the changes in the datasets.

5.3 Effect of EEG Epoch Length

For an attempt at a real-time classification system, epoch lengths of 13 seconds are not ideal. Basing a label
prediction on a shorter window would be a more timely representation of the current attentional state. In this
comparison, we want to analyze which epoch length has sufficient data to classify internal and external attention
reliably.

As described in Section 3, we cut the data in five different ways to achieve five different window lengths: 13
seconds, 7 seconds, 4 seconds, 2 seconds, and 1 second. All classifiers were trained for each epoch length 100
times and the average per participant was calculated. As an example, the participant-wise results for the LDA
can be seen in Figure 7. The averaged results over all participants for each classifier can be seen in Figure 8.
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Table 2. Classification accuracies for every participant calculated on 13-second epochs with 50% training data. Mean
calculated over 100 random train-test-splits.

Participant || LDA | RF | VNN | sFBCSP-NN
1 0.970 | 0.944 | 0.781 0.979
2 0.845 | 0.917 | 0.810 0.880
3 0.919 | 0.833 | 0.705 0.921
4 0.456 | 0.639 | 0.619 0.449
5 0.819 | 0.639 | 0.576 0.682
6 0.916 | 0.694 | 0.829 0.926
7 0.837 | 0.778 | 0.595 0.837
8 0.970 | 0.972 | 0.710 0.978
9 0.724 | 0.611 | 0.600 0.629
10 0.933 | 0.972 | 0.610 0.941
11 0.713 | 0.639 | 0.610 0.770
12 0.673 | 0.75 | 0.607 0.717
13 0.721 | 0.722 | 0.724 0.648
Mean 0.807 | 0.778 | 0.645 0.797
Std. 0.141 | 0.131 | 0.086 0.157
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Fig. 7. Mean classification accuracy computed with the LDA on 50% of the data for every participant and different epoch
lengths. Means were computed over 100 random train-test-splits.

Participant 14 was again left out of the analysis for 13-second epochs because of the smaller amount of available
trials.

Overall, the Random Forest and the Vanilla Neural Net performed worse for all epoch lengths and thus we
decided, to not consider them further in this work for the person-independent analysis that follows.

For the LDA, the best performance was achieved using 13-second epochs. The performance decreased with
shorter epoch lengths. The calculated confidence intervals for each epoch length are: 13 seconds = [0.768, 0.847],
7 seconds = [0.752, 0.813], 4 seconds = [0.745, 0.799], 2 seconds = [0.715, 0.766], 1 second = [0.685, 0.73]. The
difference between 13 and 7 seconds (#(12)= 2.2494, p=.0440) is statistically significant. Between 7 and 4 seconds
the mean differences were not significant with #(12)= 2.0528, p=.0626. The difference between 4 and 2 seconds
(t(12)= 4.7243, p<.001) and 2 and 1 seconds (#(12)=6.7575, p<.001) were highly significant.

The neural net performs better than the LDA for 2 seconds, 4 seconds, and 7 seconds. The best result was
achieved for the 7 second epoch length with a confidence interval of [0.765, 0.836], followed by 13 seconds
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Fig. 8. Mean classification accuracies and Standard Deviation for all classifiers and epoch lengths. VNN = Vanilla Neural Net,
LDA = Linear Discriminant Analysis, RF = Random Forest, CNN = sFBCSP-NN

([0.754, 0.893]) and 4 seconds ([0.754, 0.82]). Even so, the difference between 13 and 7 seconds was not significant
(#(13)=1.2547,p=.2317). The confidence interval for the 2-second epochs is [0.728,0.788]. The sFBCSP-NN and
the LDA performed almost equally on the 1-second epochs (NN: [0.68, 0.734]). With #(13)= 2.3417, p=.0358 the
differences between the means for 7 and 4 seconds were significant and the differences between 4 and 2 seconds
(t(13)=4.8948, p<.001) and 2 and 1 second (#(13)=5.5806, p<.001) were highly significant.

The overall best performance was delivered by the LDA for 13-second epochs. However, the accuracy decrease
for 7 and 4-second epochs, especially using the NN, is small, compared to the gain the shorter windows would
have in a real-time classification system. The payoff for the slightly lower classification accuracy is worth it,
considering that attention switches between internal and external attention can happen fast and often. Thus, a
4-second interval will probably result in better accuracy for a less controlled setting and environment because it
reacts faster to attentional changes than a classifier, that relies on 13 seconds of data. Therefore, we will primarily
consider shorter window lengths for the investigation of real-time classifiers.

By splitting the cleaned EEG data into smaller windows, the number of epochs that are used for training and
testing increased. For 7 seconds, the amount of epochs is twice the amount of 13 seconds, while still maintaining
the same number of samples. Reducing the window size to 4 seconds increases the number of epochs by a factor
of 3 compared to 13-second epochs, for 2-second windows by a factor of 6 and for 1-second windows by a factor
of 13. While the duration in seconds that the features for the classifiers are based on does not change, the higher
amount of epochs that can be used to train the model might affect the results. For the LDA, the amount of features
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Fig. 9. Comparison of the mean classification accuracies depending on the amount of training data for a person-dependent
analysis. The sSFBCSP-NN was used as the Neural Net (NN).

in each feature vector stays unaffected. Only the time interval on which the features are generated changes. For
the sFBCSP-NN however, the actual input data is less, because the Neural Net is fed with the raw EEG data. For
better comparability, we repeated the analysis with the same number of feature vectors for training instead of the
same length of the training time. Accordingly, the next step will be to train the classifiers on the same number of
epochs, independent of the epoch length.

5.3.1 Effect of EEG Training Epochs Amount. To compensate for the higher amount of feature vectors used for the
training with shorter epoch lengths, we repeated the previous analyses with a different train-test split strategy
and compared them to the previous results. We limited the number of training epochs to 36 for all epoch lengths
(50% of 72 Trials in the 13-second set). Thus, the 13-second epoch analysis did not differ for the two approaches
in all subjects but subject 14 because of the smaller overall amount of data. As expected, the mean accuracy
decreased for all other epoch lengths, compared to 50% training data. This effect can be seen in Figure 9. The
differences between the means are significant for all lengths with both classifiers.

We conclude that the same number of training epochs will lead to worse classification results if the calculated
features are based on shorter time windows of EEG data. A longer period to record training data is necessary for
more reliable results. As expected, more training data leads to better results.

5.4 Pooled Data Analyses

The pooled data analysis aims at gaining further insight into how well the results generalize over multiple
participants. All results in this section are based on pooled datasets and independent of the participants. The
EEG data of all participants were treated as coming from one participant and then split into training and test
data - independent of information about the participants. Again, each analysis was run 100 times to correct for
random effects that are based on the random splitting.

With this method, data of the same participant can be in the test, and in the training data, and therefore, the analysis
is not truly person-independent. Nevertheless, the results will help us understand the trade-off between increased
training data size and increased variance in the data as well as give us a better idea about the generalizability of
the data. If this approach works significantly better than a person-independent classification, we would conclude
that a transfer-learning approach would be a good idea.
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Fig. 10. Analysis of the classification accuracies for the pooled dataset. Each bar visualizes the 95%-confidence interval
calculated on 100 runs with random train-test-splits. The number reports the average classification accuracy. The sSFBCSP-NN
was used as the Neural Net (NN).

5.4.1 Classifier and Window Length. In order to optimize the classification accuracy of the EEG data, we com-
pared all possible combinations of window lengths with the SFBCSP-NN and the LDA. We followed the same
procedure as before, training and testing the classifier 100 times to calculate the confidence interval (see Figure
10).

The overall pattern for each classifier was the same for the pooled dataset as for the person-dependent data:
the classification accuracy decreased for shorter windows. For the sFBCSP-NN, the 7 seconds epoch length was
classified with the highest accuracy of 73.99% and a 95%-confidence interval of between 71.85% and 76.14%. All
differences to the other epoch lengths were statistically highly significant, with p < .001. Only the difference
between the 4-second and the 13-second epochs was not significant with £(99) = 1.7396, p = .0851. For the LDA,
the 13-second epochs worked best with an average classification accuracy of 70.7% and a 95%-confidence interval
between 72.63% and 68.78%. The differences between all epoch lengths for the LDA were significant. Strikingly,
the sFBCSP-NN outperformed the LDA for all epoch lengths on the pooled dataset and for pairwise comparison of
each epoch length, the difference between the sSFBCSP-NN and the LDA were always highly significant. The mean
classification accuracies for both classifiers and each epoch length are reported in Figure 10. The bar visualizes
the 95%-confidence interval.

Based on these results and the goal to come close to real-time attentional state classification, we decided to
perform the real person-independent analysis on 4-second epochs with the neural network even though the
7-second epoch had a better classification accuracy. The trade-off between a slightly smaller classification accuracy
but shorter windowing seems appropriate in this context. As argued before, the classification accuracy in a less
controlled setting can be expected to be higher for a 4-second interval because it can capture the changes in the
attentional state faster and thus classify the real-time attentional state more accurately, than if the classification
were based on a 7-second interval.
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Table 3. Mean and lower and upper boundaries of the 95%-confidence interval of the person-independent classification
accuracy for each participant.

Participant | Lower Border Upper Border Mean
1 0.640 0.670 0.655
2 0.755 0.767 0.761
3 0.651 0.671 0.661
4 0.520 0.529 0.525
5 0.501 0.508 0.505
6 0.747 0.763 0.755
7 0.513 0.517 0.515
8 0.603 0.633 0.618
9 0.594 0.611 0.602
10 0.746 0.763 0.754
11 0.413 0.442 0.428
12 0.526 0.556 0.541
13 0.504 0.509 0.506
14 0.500 0.527 0.513

5.5 Person-Independent Analysis

We followed two different approaches to test how well EEG data can be classified person-independently for
internal and external attention in AR. In the first approach, we trained the model in a leave-1-out fashion and
tested the model on the participant that was left out. In the second approach, we trained the model on a set of
selected participants, based on a high classification accuracy in the first approach to check whether "good training
data" improves classification accuracies for datasets with a lower accuracy. As mentioned, the classification was
performed using the sSFBCSP-NN with raw 4-second EEG data windows as input.

5.5.1 Leave-T-out. The leave-1-out procedure was repeated 100 times for each participant. The borders of the
individual 95%-confidence intervals are reported in Table 3. The accuracies vary greatly between participants. On
average, the classification accuracy was 59.56% with a standard deviation of 10.42%. The overall 95%-confidence
interval is [0.541, 0.65] for the classification accuracy if a classifier was never trained on data from the specific
person it was tested on. (Reminder: Chance level = 0.5).

5.5.2 Selected Training Set. The seven participants with the highest classification scores from the first approach
(all above 60% accuracy) were chosen for the model training in the second approach. The goal was to leave out
"bad data" in the training that does not generalize well over the other participants. The datasets from participants
1,2,3,6,8, 9, and 10 were used for training in the leave-1-out approach on their subset. Each of these seven versions
of the model was used to classify the participants that were not within the subset. The data of the participants in
the subset was classified with the one version of the model that was not trained on their data. The accuracies
can be seen in Figure 11. The confidence interval over all participants is [0.538, 0.672]. One participant achieved
an accuracy of 88%. There is no general pattern on whether or not the selected classifier training improved the
classification accuracy in a person-independent analysis. Also, there is no version with selective training that
worked significantly better than the other versions for all participants.
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Fig. 11. Classification accuracies of the person-independent testing with a selected subset for the training of the SFBCSP-NN.

5.6 Summary

All in all, the previous results suggest that a real-time person-independent classifier of internal and external
attention in AR is possible with a good accuracy. However, there seem to be many dependencies and participant-
based differences. The main results of this systematic study are the following:

e Person-dependent:
— Our eye tracking features lead to worse results than the EEG features
— EEG and ET classification accuracies are only weakly correlated
— A combined feature vector for ET and EEG data slightly improved the single modality results but the
improvement was not significant compared to only EEG data
— The sFBCSP-NN and the LDA performed similarly
— Longer epoch lengths have higher classification accuracies than shorter epoch lengths
— A higher amount of epochs used for training improves the results for all epoch lengths
e Person-independent:
— Our chosen ET features do not generalize over participants
— The sFBCSP-NN is more promising than an LDA with Power Spectral Density-related features
- 4-second epochs have the best trade-off between classification latency and accuracy
- A classifier training on a subset of selected participants with good classification results does not sig-
nificantly improve person-independent classification compared to a classifier trained in a leave-1-out
fashion

In Figure 12, the mean accuracy of the 4-second epochs classified by the NN for person-dependent, person-
independent, selected training set, and pooled dataset are summarized.
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Fig. 12. Summarized results for the 4-second epochs and the sFBCSP-NN approach for person-dependent (PD), person-
independent (PI), selected training set , and pooled dataset.

6 DISCUSSION

In this work, we explored different settings and processing options for internal and external attention detection
in augmented reality. The goal is to work towards a real-time, person-independent brain-computer interface in
combination with AR. We compared EEG and eye tracking as input modalities, four classification algorithms, and
different time window lengths for the training and testing data. The individual differences between participants
make general claims and average computations difficult. The person-independent classification worked well
and much better than the chance level for half of the participants, where some scores reached as high as 88%
classification accuracy. On the other hand, half of the participants’ datasets could not be classified reliably by a
person-independent classifier with the settings that we chose.

The possible explanations for the results are manifold. First of all, one always needs to consider the possibility
that the recorded data was noisy for some participants, and artifacts disturb a good classification process. All
of the participants that had lower person-independent scores also had comparatively low person-dependent
scores. Possibly, their data quality or setup accuracy is responsible for the decreased classification accuracies.
Additionally, the concept of BCl-illiteracy has evolved in this field of research (see Dickhaus et al. [13]). It
describes the often observed phenomenon that some users are incompatible with BCIs, even if they are trained
person-dependently. This concept also finds its critics (see Thompson [44]) but could be an explanation of why
the setting works well for some participants while it fails for others.

Another source of problems might be label noise that results from the nature of attention. In the experiment, the
participant was expected to direct it’s attention internally or externally for 15 to 20 consecutive seconds. These
trials were cut into smaller segments during our analysis. Short fluctuations of the attentional focus would induce
a label noise on many segments. These are hard to control for and would require a different experimental setup
or labeling mechanism. The different participant results might describe that some people were better at keeping
their attentional focus than others, thus, their labeling was more accurate. Also, all claims that we made about
the epoch length are dependent on the sampling frequency which was 500 Hz in this study. For other sampling
frequencies, the results will differ.

Taking the data classification to the next level by making it person-independent is extremely important for the
usability of such a BCI but might face the problem that there are interpersonal differences in EEG power spectra
that are genetically dependent (see Smit et al. [43]). Generalizing over features that are based on power spectral
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densities or common spatial patterns in the brain could, therefore, be an approach with many obstacles.

We compared only two classifiers, a linear approach and a neural network that both work with power spectral
features. Appriou et al. [2] explicitly suggest that the best results for mental workload were achieved with the
shallow convolutional neural net. On the other hand, Schirrmeister et al. [39] suggested a deep convolutional
neural network where the features are not fixed by the architecture. The results of such a network would be
harder to understand but this black box might improve classification accuracies. In further studies, other classifiers
could be implemented and tested to find further advantages in deep learning approaches.

Interestingly, the EEG data-based classification was not more accurate than the eye tracking-based classifica-
tion in all participants. Especially for participants with a low EEG based accuracy, the eye tracking prediction
worked well in the person-dependent fashion. Eye gaze behavior is highly influenced by the visual task in this
paradigm. However, for the internal condition, we did not advise the participant to follow any specific strategy.
Unfortunately, no questionnaire data is available on the task-solving approaches of the participants. We assume
that during the external condition, the eyes were mainly fixated on the visible ball. During the internal conditions,
participants could use different strategies for imagining the movement of the ball, for example, either fixation on
the visible tube while performing the movement, or fixating where they imagine the ball to move and following it
with their movement. If the gaze patterns during both conditions are very similar concerning fixations, saccades,
and blinks, a classification is only possible with low accuracy.

The results of the pooled dataset for the eye tracking data also suggest that the gaze behavior and thus the
strategies for solving the internal condition might have varied highly across participants. The classification
accuracy for the pooled dataset was barely above chance level.

The conclusion that eye tracking data or gaze behavior is not usable for a person-independent classification of
internal and external attention might arise from our study. However, our limited feature set might have been
the reason for our results. The methods used to compute the features or the choice of features could have been
sub-optimal and led to a classification barely above chance. This is one of the very interesting follow-up questions
that arose from this study. Diving deeper into the topic of person-independent classification of eye tracking data
and finding characteristic features for internal and external attention would have been out of the scope of this
study but will be at the center of future research. We do not want to claim that eye tracking is unsuitable for
person-independent attention classification.

Overall, the individual differences between participants make general claims difficult. Due to the fact that
person-independent classification is only possible if we have interpersonal similarities, questions about the
validity and possibility of the proposed approach arise. Also, considering that 50% of participants could not be
reliably classified in the person-independent approach, we have to consider collecting data from more participants.
A large and more varied data set might be better for dealing with outliers and improve prediction accuracy
considerably.

One question that was not addressed in this study is the necessity and placement of EEG electrodes. As an
example, Liu et al. [24] implemented a real-time approach to recognize 8 different emotions with only four
electrodes. Fewer electrodes would be favorable for the usability of such a BCI but more electrodes might improve
the accuracy. This trade-off is similar to the trade-off between 'real-time’ windowing and accuracy. The evaluation
of this balance is dependent on the usage context. For research and detailed lab studies, a more complicated setup
with slower reaction times of the correct prediction could be endurable, whereas user applications highly depend
on comfort and immediateness. It could also be considered whether other brain imaging techniques are suitable
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for attention detection (i.e. functional near-infrared spectroscopy).

The good results on the pooled dataset suggest that transfer learning is another promising approach that could
improve the classification accuracy compared to pure person-independent model training. The results show that
personalization of the model of some type might be necessary for reliable results. For example, Saeed et al. [36]
propose a self-supervised learning approach that works with 5 labeled instances per class. Another idea would
be that a pre-trained person-independent classifier could be retrained on only a few labeled trails of the user.
However, a disadvantage would be that training data still need to be explicitly recorded. Whether or not this
improvement is worth the effort and inconvenience of training data recordings is in the eye of the beholder.
An additional idea, instead of collecting explicitly labeled training data in a separate training session, would
be a pre-trained self-correcting classifier. This option might be available for certain applications. The classifier
could be person-independent in the beginning, and during the usage of the application, information about
classification mistakes (i.e. error potentials) could be used to improve the classifier by giving feedback about
the wrong prediction. While the wrong classification in the beginning would decrease the usability, the collec-
tion of the training data would be less obtrusive because it could happen during the normal usage of the application.

Our hope is that the results of this study can be transferred to other tasks. Since we assume that the only

difference in the EEG data for both classes should be the attentional direction, we assume that the results hold
for other internal/external attention tasks as well. Nevertheless, the task-dependency of the results is yet to be
assessed.
In the preliminary proof-of-concept study, we tested whether an internal/external classifier would improve the
perception of usability at all. The classifier required training and had low accuracy. Despite this sub-optimal
setting, the attention-awareness was already rated as significantly better than an attention-unaware setting. This
shows the importance of the performed study.

6.1 Contribution to the Field

The research on the suggested topic contributes to the field of Brain-Computer Interfaces, attention research, and
specifically the improvement of Augmented Reality systems.

We are not aware of other studies that explore internal and external attention detection in a person-independent
fashion. By suggesting these variations we point out an interesting direction of research that will improve the
usability of certain Augmented Reality applications. With the wide scope and many different comparisons in this
work, we test the effects of very basic settings. This can be an inspiration for a more detailed and task-independent
analysis of some of the main research questions. Additionally, many follow-up questions arose from the results.

6.2 Future Work

As mentioned in the discussion, more data should be collected for more reliable results. Our next step will also
include the collection of new data to test the task independence of the results. We will design other AR tasks
with internally and externally directed attention and analyze open questions from this study. In the future, we
will focus on the exploration of other classification approaches for eye tracking data that are more robust over
participants. This will also have to be assessed for different paradigms to test how reliable the results are for
different visual tasks. Afterward, the combination of multiple modalities in early, as well as late fusion approaches
could be improved. The EEG results suggest that true person-independent classification will continue to be of
high difficulty. Instead, we will consider classifier training approaches that use a minimum necessary amount of
explicit training phases, such as supervised transfer learning or unsupervised self-correcting classifiers. Once
reliable results were found, the re-implementation of a real-time classification paradigm will be the overall goal.
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