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Abstract

The hippocampus serves a key role in memory acquisition and consolidation, yet it1

is unknown whether the hippocampus stores raw sensory inputs or merely genera-2

tive reconstructions of those inputs. In this paper we examined these competing3

hypotheses of memory representation in the hippocampus. To do so we modeled4

the hippocampus as a modern Hopfield network and the entorhinal cortex as a vari-5

ational autoencoder (VAE). We used Mitsuba 3 to generate a Cornell box dataset.6

In our first model, we passed these scenes directly into our Hopfield network and7

trained our VAE on the Hopfield network’s output when prompted by stimulus.8

In the second, the model first probabilistically inferred latent parameters for the9

observations and generated reconstructed observations which were then passed into10

the Hopfield network to aid in the training of our VAE. We tested the capacity of11

our models for generative recall of these scenes and found reliable minimization12

of reconstruction error during recall in both models. We concluded that either13

representation scheme or a combination of the two might be at work in the human14

brain. Future studies should explore implementing features such as forgetting and15

recall vulnerability in our base model and comparing model performance to human16

performance on recall tasks.17

1 Introduction18

Memory is at the core of human cognition. Understanding the algorithms of how we encode, store,19

retrieve, and use memory representations is essential for understanding human intelligence.20

Simply put, human memory is characterized by the lossy compression and imperfect reconstruction of21

an initial set of neural signals associated with sensory experiences. In order to construct and maintain22

a memory, the mind must first learn "schemas" (latent structures) from sensory inputs [10]. The23

hippocampus is responsible for directing the initial parsing of stimuli into memories. Over time, the24

hippocampus mediates the transfer of relevant patterns of neural activity through the entorhinal cortex25

(EC) to the medial prefrontal cortex and anterolateral temporal cortex via “neural replay” [4, 21, 22].26

This process of consolidation entails the learning of schemas and enables the creation of longer-27

term memory. Long-term memories can persist in the neocortex for a lifetime, but the process of28

“accessing” these memories is anything but straightforward [3]. Recall entails utilizing these learned29

schemas stored in the neocortex to realize a noisy estimation of aspects of the initial brain state at the30

time of first memory acquisition [18].31

This whole process can be framed as the training of a generative model and the subsequent generative32

processes mediated by the latent variables learned by the model. However, a complete understanding33

of the inner-workings of the memory formation process remains remote [9, 15]. For one, it is unclear34

just exactly how short-term memories are represented in the hippocampus and when along the35

complex process of memory consolidation the initial armada of neural signals are stripped down to36

that more fine set responsible for encoding latents. Perhaps there are even multiple layers of Bayesian37

inference and image regeneration inherent in the pathways of memory formation.38



Figure 1: Model of the consolidation-recall pathway that allows for long-term memory formation.
The hippocampus acts as an autoassociative network which stores encodings of sensory inputs. Over
time, replay of these representations facilitates the learning of latent structures by the neocortex. The
neocortex then acts as a generative network, producing noisy recollections of memories from these
learned parameters on demand.

To grapple with these questions, recent studies have reverse engineered computationally plausible39

models of the consolidation-recall pathway. Many of these studies model the hippocampus as an40

autoassociatve network and the neocortex as a generative network [17]. One such study of interest,41

devised a system by which a modern Hopfield network, representing the hippocampus, employed42

teacher-student learning [11] to train a variational autoencoder (VAE) representing the EC [19].43

This model proved capable of robust generative recall when the Hopfield network encoded exact44

representations of images.45

Here, we examine whether and how altering the encoding mechanism in the Hopfield network might46

impact the capacity of the model for generative recall. Specifically we compare the performance of an47

exact reimplementation of the original model with one in which the Hopfield network instead stores48

reconstructions of the scenes after an initial layer of Bayesian inference and image regeneration. In49

doing so, we attempt to understand whether the hippocampus aids the neocortex in learning latent50

structures from raw sensory inputs or stochastic reconstructions of sensory inputs (i.e. perception). In51

other words, we seek to shed light on whether consolidation is merely the learning of latents from52

observations or rather the learning of latents from reconstructed observations which themselves result53

from a long game of Bayesian telephone.54

2 Methods55

Code for the methods described below can be accessed in this repository: https://github.com/56

Daniel-Gong/final_project.57

2.1 Custom Cornell Box Dataset58

Using Mitsuba 3 we constructed a dataset (see Figure 3) of 270 Cornell box images each59

with a distinct combination of wall color ({red, white, green}), floor color ({red, white,60

green}), feature shape ({sphere, cube}), feature color ({red, white, green}), and feature61

scale ({.3, .4, .5, .6, .7}).62

2.2 Inverse Graphics Engine63

Using the Gen package for Julia [6], we implemented an inverse graphic engine capable of inferring64

latent parameters from each observation in our dataset and reconstructing noisy images from these65

latents. Inference was conducted by constraining the generative function with bitmaps of the original66

observations selectively compressed to ensure representative description of the key-features of the67
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Figure 2: Model illustrations. Left: pattern retrieval process in the modern Hopfield network. Z is the
pattern to be retrieved, Y are all stored patterns, R is the input pattern, and β is the inverse temperature
parameter. Right: architecture of the variational autoencoder. The process begins with the input
image fed into the encoder, which encodes the image into a latent representation characterized by
a mean vector and a variance or standard deviation vector. From this, a sampled latent vector is
generated, where the latent variable Z is sampled as Z = µ+ σ ⊙ ϵ, with ϵ drawn from a standard
normal distribution N (0, 1). The decoder then takes the sampled latent vector to reconstruct the
predicted image from Z, which is the VAE’s approximation of the original image.

Figure 3: Left: 25 examples from our custom Cornell box dataset. Right: 25 inferred Cornell box
images, corresponding to the ones on the left.

observations. Using Bayes rule a posterior for the latents was generated over these bitmaps:68

P (θ|b(I)) ∝ P (b(I)|θ)P (θ) (1)

where θ are latents, and b(I) are bitmap observations. Random-walk Metropolis-Hastings algorithm69

was employed to sample latent values for each image from their respective posteriors.70

2.3 Modern Hopfield Network71

We implemented a modern Hopfield network to model the hippocampus using the TensorFlow72

package for Python (accesed via PyCall in Julia) [1]. Modern Hopfield netoworks are a variety of73

recursive neural network designed to model dense associative memory. In a modern Hopfield network,74

stable state corresponds to a particular memories [16, 13]. Compared to their classical alternatives,75

modern Hopfield networks are better suited for modeling biological memory because they maintain76

exponential storage capacity per neuron and differentiability across use cases [13]. A core equation77

for the modern Hopfield network we are using (see Figure 2 left panel) is the update rule for the78

state of the stored patterns, which is based on the concept of continuous states and uses an attention79

mechanism [16]. This can be represented as:80

Z = softmax(βRYT )Y (2)
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Figure 4: Left: Histogram of pixel values of one example image from our custom Cornell box dataset
before normalization. Right: histogram of pixel values of the same image after normalization.

where Z is the state vector of the Hopfield network, Y is the matrix of stored patterns (weights), R is81

the input pattern, β is the inverse temperature parameter, controlling the sharpness of the softmax82

function. The softmax function is applied to ensure that the output is a probability distribution. This83

formula demonstrates how the attention mechanism is used in modern Hopfield networks, in which84

the similarity between the input pattern and the stored patterns determines the weights used to update85

the network’s state.86

We used uniform random noise inputs (between -1 and 1) as the input pattern to initiate pattern87

retrieval ("neural replay") from the Hopfield network. To make sure all stored patterns (no matter88

they are spheres or cubes) have equal probabilities to be replayed, we normalized the distribution of89

pixel values in the stored patterns to be between -1 and 1 (see Figure 4).90

2.4 Variational Autoencoder91

We implemented a VAE to model the EC using the TensorFlow package for Python (accesed via PyCall92

in Julia) [1]. Variational autoencoders are generative networks that learn to deconstruct observations93

into latent parameters from which those initial observations can be nosily reconstructed [12]. Our94

VAE (see Figure 2 right panel) was trained to minimize the reconstructed error between input images95

(i.e., replayed memories from the modern Hopfield network) and predicted images from the decoder,96

as well as the Kullback-Leibler (KL) divergence between the latent vector sampled in VAE and a97

standard normal distribution. The loss function of our VAE can be represented as:98

L(ϕ, θ, x) =
1

N

N∑
i=1

(Xi − X̂i)
2 +KL (G(Zµ, Zσ) || N (0, 1)) (3)

where ϕ are the parameters of the encoder, θ are the parameters of the decoder, Xi is the ith input99

image replayed from the Hopfield network, X̂i is the ith reconstructed image produced by the100

decoder, and N is the total number of images in the dataset (N = 270 in our case). G(Zµ, Zσ) is101

the Gaussian distribution defined by the encoder’s output, which includes a mean vector Zµ and a102

standard deviation vector Zσ . The first term on the right side of this equation is a Mean-Squared-Error103

(MSE) loss, and the second term (the KL divergence) acts as a regularizer, which keeps the encodings104

sufficiently diverse.105

We used the AMSGrad variant of the Adam optimiser as the stochastic gradient descent method for106

the training of the VAE. A latent variable vector length of 20, learning rate of 0.001 and KL weighting107

of 1 were used in the main results.108

To test the performance of our VAE after training, we created perturbed partial Cornell box images109

by randomly selecting 10% of pixels in each image and then replacing them with 0s. These partial110

images are used as the input to the trained VAE to check their generative recall.111
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Figure 5: Two hypotheses. Left: The memory storage mechanism for the true observation hippocam-
pus hypothesis simply entails storing the original sensory inputs to the Hopfield network. Right: The
memory storage mechanism for the Bayesian hippocampus hypothesis entails passing the sensory
inputs into the inverse graphics engine and capturing the perceptual reconstruction in the Hopfield
network.

2.5 Two Hypotheses112

2.5.1 True Observation Hippocampus113

In this hypothesis (Figure 5 left panel), sensory inputs are stored in the hippocampus exactly as they114

are observed. In order to model this, the original 270 images from our Cornell Box dataset were115

stored in the modern Hopfield network. Next, we exposed the Hopfield network to random noises and116

recorded which observations were replayed. We passed in the replayed representations and trained the117

VAE over 50 epochs (with early stopping applied if there was no loss improvement for three epochs)118

to learn the encoding of those stimuli as latents which could then be decoded to generatively "recall"119

observations similar to those original observations stored in the Hopfield network. The reconstruction120

error of the VAE with respect to the replayed representations from the Hopfield network was analyzed121

to shed light on the of utility of the model.122

2.5.2 Bayesian Hippocampus123

In this hypothesis (Figure 5 right panel), sensory inputs are first passed into our inverse graphics124

engine for preprocessing. The inverse graphics engine infers latent parameters from those images125

and constructs noisy perceptions of the images. These reconstructions are passed into the modern126

Hopfield network and stored as memories. We exposed the Hopfield network to random noises and127

recorded replayed observations. As before, we passed in the replayed representations and trained the128

VAE over 50 epochs (with early stopping applied if there was no loss improvement for three epochs)129

to learn the latents underlying these representations so as to reconstruct them. The reconstruction130

error of the VAE was analyzed to shed light on the appropriateness of the Bayesian hippocampus131

hypothesis as compared with the true observation hippocampus hypothesis.132

3 Results133

3.1 True Observation Hypothesis134

After 270 images from our custom Cornell box dataset were encoded in the modern Hopfield network,135

random noise inputs to the network successfully reactivated its memories (Figure 6). Notably, our136

normalization procedure on the distribution of pixel values ensured that all stored patterns had a137

chance to be replayed, no matter what shape they are, what color they have, etc. It is possible that138

this normalization procedure is also implemented in the brain to ensure better encoding and retrieval139

of memories [8, 5], considering that the neural signals of sensory experiences can vary a lot in terms140

of their salience merely because of their physical properties.141

The training of our VAE on the replayed true observations converged after around 15 epochs and142

triggered early stopping after around 30 epochs. The performance test for the trained VAE showed143
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Figure 6: True observation hypothesis: random inputs to the Hopfield network and the corresponding
replayed true observations.

Figure 7: True observation hypothesis. Left: reconstruction errors of the VAE across training epochs.
Right: VAE reconstructions based on noisy Cornell box images.

that it was able to noisily reconstruct complete observations from perturbed partial images in the144

original custom Cornell box dataset (Figure 7). The recalled memories are to some degree sketchy145

and blurry given that there are only 270 training images. However, we believe scaling up the number146

training samples will lead to significantly better performance.147

3.2 Bayesian Hypothesis148

First, our inverse inverse graphics engine for the most part generated images that differed only slightly149

from the original images (Figure 3 right panel) , even though we only used a simple random walk150

Metropolis Hastings algorithm. As before, we applied the same normalization procedure to make151

sure every inferred image has a chance to be replayed after they are encoded in the Hopfield network.152

Random noise inputs to the network successfully reactivated diverse memories (Figure 8).153

Furthermore, the training of our VAE on the replayed inferred images converged also after around154

15 epochs and triggered early stopping after around 40 epochs. The performance test for the trained155

VAE showed that it was also able to noisily reconstruct complete observations from perturbed partial156

images in the original custom Cornell box dataset (Figure 9).157

4 Discussion158

Although the quality of our reconstructed images is somewhat impressive, we must first acknowledge159

a few constraints on our experiment that reduced the performance of both models and influenced our160

results. Firstly, given issues with accessing large compute resources on short notice we opted to train161

our models on smaller dataset of 270 images whereas other similar studies using VAE’s recommend162

upwards of 10,000 images [12, 19]. Secondly, we built our inverse graphics engine in our Bayesian163

hypothesis to infer a measly six parameters, five of which were drawn from discrete distributions.164

As a result, the reconstructed images were in some ways too similar to our original images and in165

some ways unrealistically different. For example, in our model either the exact hue of red, white, or166

green was inferred or the incorrect color was inferred altogether. In reality however it is much more167

plausible that a human would infer a lightish-red ball to be a darkish-pink ball than a white ball.168

Still, despite these issues both the true observation and Bayesian hypotheses demonstrated equal169

proficiency in recalling memories from noisy inputs. Considering that the brain’s inverse graphic170

engine likely possesses comparable or greater strength than our implemented graphics engine for171

this task, this suggests that the hippocampus could represent memories in either fashion while172

yielding similar success in recall. Unfortunately, this leads to the conclusion that both models would173
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Figure 8: Bayesian hypothesis: random inputs to the Hopfield network and the corresponding replayed
Bayesian inferences.

Figure 9: Bayesian hypothesis. Left: reconstruction errors of the VAE across training epochs. Right:
VAE reconstructions based on noisy Cornell box images.

perform similarly if we compared their recall performance against human subjects. Thus, employing174

behavioral comparison metrics between our model and human subject would be insufficient to fully175

pick open the neural black-box and understand the fine mechanisms of the hippocampus.176

On the flip side, the success of both hypotheses highlights an intriguing principle regarding how177

and when the brain may opt to deal with true observations as opposed to reconstructed observations.178

Since the computational outcome remains consistent, the brain might decide whether to utilize179

Bayesian reconstructions or original observations based on minimizing the temporal and spatial180

complexity of the system. In other words, algorithmically speaking, the brain might choose the181

representation that is more practically convenient. If this holds true, then considering our two models182

of hippocampal memory representation as mutually exclusive would be inaccurate. It is plausible that183

the hippocampus could store images, reconstructions of images from inferred latents, and perhaps184

even the latents themselves [19]. To test this hypothesis, future work should attempt to integrate all185

three forms of memory representation into the same Hopfield network. Surmising which hippocampal186

representation is in use any given moment in consolidation could be a matter of recording neural187

population dynamics during memory acquisition tasks in humans and comparing these dynamics to188

simulated traces from this integrated model [14].189

Collecting behavioral data on similar recall tasks could also be useful to help direct the refinement of190

our overall model of generative recall and build in even more complex functionalities. For example,191

the current model only implicitly handles the possibility of forgetting images. True, consolidating192

additional memories in our model reduces the probability of recalling a prior memory. However,193

this is only because given a stimuli our model recalls a memory and the more similar memories194

there are stored in the VAE, the smaller the chance of a particular memory being recalled. A more195

robust system of forgetting, must consider the larger biological picture of the issue: there is a limited196

quantity of data that can physiologically be stored in both the hippocampus and the neocortex and a197

limited amount of time memories are stored in the hippocampus during which they can be replayed198

and consolidated and transferred to the neocortex. As a result, forgetting could be the result of either199

temporal constraints (the hippocampus selectively participating in the consolidation of one decaying200

memory at the expense of another) or spatial constrains (rewiring neural pathways in the neocortex201

resulting in the loss of particular activation dynamics) [7, 20]. Accessing behavioral data on the rate202

and nature of "forgetting" and the influence of recall on reconsolidating images (and thus increasing203

their likelihood of being recalled on future occasions) could guide the creation of a more robust204

probabilistic forgetting system.205

In a similar vein, the current model does not implement any sort of system emulating recall vulnera-206

bility [2], the phenomenon by which generatively recalling memory results in increased malleability207

of the associated learned latent structures in the neocortex. Although we experimented with an208
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implementation of a probabilistic system capable of occasionally adding the products of generative209

recall to the Hopfield network and retraining the VAE with these noisy "hallucinated" memories, we210

faced difficulties in determining how to (1) tune the parameters of such a system to accurately reflect211

the realities of recall vulnerability (which has not been extensively quantitatively studied) and (2)212

rebuild our memory acquisition model in a sequential manner to avoid having to retrain the entire213

VAE every time recall affected our Hopfield network.214

Hence, our base model represents a strong jumping-off point for future exploration of the generative215

processes that underlie episodic and semantic memory, imagination and recall. Refining our model216

piece-by-piece to bring it in line with behavioral results could yield key insights into the neural fabric217

of memory and the computational and algorithmic systems that govern our lives.218
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